[Pembahasan] Contoh Soal Menentukan Rumus Suku Ke-n Baris & Deret Aritmatika
Contoh Soal dan Pembahasan Menentukan Rumus Suku ke-n
Soal 1
Suku ke-n dari barisan 5, 9, 13, 17, ......
A. n + 4
B. 4n + 1
C. 2n + 1
D. 2n² + 1
Pembahasan:
Diketahui:
Suku pertama (a) = 5
Beda (b) = 9 - 5 = 4
Ditanyakan:
Rumus suku ke-n
Penyelesaian:
Un = a + (n - 1)b
= 5 + (n - 1)4
= 5 + 4n - 4
= 4n + 1
(Jawaban: B)
Soal 2 (UAN 2002)
Suku ke-n suatu deret aritmatika adalah Un = 3n - 5. Rumus jumlah n suku yang pertama deret tersebut adalah .....
A. Sn = (n/2)(3n - 7)
B. Sn = (n/2)(3n - 5)
C. Sn = (n/2)(3n - 4)
D. Sn = (n/2)(3n - 3)
E. Sn = (n/2)(3n - 2)
Pembahasan:
Un = 3n - 5
Suku pertama (a):
a = U₁ = 3(1) - 5
= 3 - 5
= -2
Rumus jumlah n suku yang pertama (Sn):
Sn = (n/2)(a + Un)
Sn = (n/2)(-2 + (3n - 5))
Sn = (n/2)(3n - 7)
(Jawaban: A)
Soal 3
Suku keempat dan kesepuluh suatu barisan aritmatika berturut-turut adalah 21 dan 51. Rumus suku ke-n barisan aritmatika tersebut adalah .....
Pembahasan:
Diketahui:
Suku keempat (U₄) = 21
Suku kesepuluh (U₁₀) = 51
Ditanyakan:
Rumus suku ke-n.
Penyelesaian:
Un = a + (n -1)b
Suku keempat (U₄) = 21
a + (4 - 1).b = 21
a + 3b = 21 ........(1)
Suku kesepuluh (U₁₀) = 51
a + (10 - 1)b = 51
a + 9b = 51 .........(2)
Eliminasi persamaan (1) dan (2)
a + 3b = 21
a + 9b = 51 -
-6b = -30
b = -30/-6
b = 5
Subtitusi nilai b = 5 ke persamaan (1), diperoleh:
a + 3b = 21
a + 3(5) = 21
a +15 = 21
a = 21 - 15
a = 6
Rumus suku ke-n (Un):
Un = a + (n - 1)b
Un = 6 + (n - 1)5
Un = 6 + 5n - 5
Un = 5n + 1
Jadi, rumus suku ke-n barisan aritmatika tersebut adalah 5n + 1
Soal 4 (PROYEK PERINTIS 1983)
Jumlah n suku yang pertama suatu deret aritmatika adalah Sn = n2(3n - 17). Rumus untuk suku ke-n deret ini adalah .....
A. 3n - 8
B. 3n - 10
C. 3n - 6
D. 3n - 4
E. 3n - 2
Pembahasan:
Sn = n/2(3n - 17)
Suku pertama (a):
a = S₁ = (1/2)(3(1) - 17)
a = (1/2)(-14)
a = -7
Rumus untuk suku ke-n (Un):
Sn = n2 (a + Un)
n2(3n - 17) = n2 (a + Un)
<=> 3n - 17 = a + Un
<=> a + Un = 3n - 17
<=> -7 + Un = 3n -17
<=> Un = 3n - 17 + 7
<=> Un = 3n - 10
(Jawaban: B)
Soal 5
Jumlah n suku pertama suatu deret aritmatika adalah Sn = n² + 3n. Rumus suku ke-n deret aritmatika tersebut adalah.....
Pembahasan:
Sn = n² + 3n
Suku pertama (a):
a = S₁ = (1)² + 3(1)
a = 1 + 3
a = 4
Rumus untuk suku ke-n (Un):
Sn = n2 (a + Un)
n² + 3n = n2 (a + Un)
<=> n(n + 3) = n2 (4 + Un)
<=> n + 3 = 12 (4 + Un)
<=> 2(n + 3) = 4 + Un
<=> 2n + 6 = 4 + Un
<=> 4 + Un = 2n + 6
<=> Un = 2n + 6 - 4
<=> Un = 2n + 2
Soal 6 (UAN 2002 IPA P4)
Jumlah suku ketiga dan ketujuh suatu deret aritmatika adalah 12 dan suku kesepuluh adalah -24. Rumus jumlah n suku pertama deret tersebut adalah Sn = .....
A. 18n - 3n²
B. 33n - 3n²
C. 27n - 3n²
D. 30n - 3n²
E. 66n - 3n²
Pembahasan:
Un = a + (n - 1)b
U₃ = a + 2b
U₇ = a + 6b
Suku ketiga + suku ketujuh = 12
(a + 2b) + (a + 6b) = 12
2a + 8b = 12
a + 4b = 6 .................(1)
Suku kesepuluh = -24
a + (10 - 1) = -24
a + 9b = -24 .............(2)
Eliminasi persamaan (1) dan (2),diperoleh:
a + 4b = 6
a + 9b = -24 -
-5b = 30
b = 30/-5
b = -6
Subtitusi nilai b = -6 ke persamaan (1)
a + 4b = 6
a + 4(-6) = 6
a - 24 = 6
a = 6 + 24
a = 30
Rumus jumlah n suku pertama (Sn)
Sn = n/2(2a + (n - 1)b)
Sn = n/2(2(30) + (n - 1)(-6))
Sn = n/2(60 - 6n + 6)
Sn = n/2(66 - 6n)
Sn = n(33 - 3n)
Sn = 33n - 3n²
(Jawaban: B)
Soal 7 (UMPTN 1990)
Jumlah n bilangan bulat positif pertama sama dengan ......
A. n(n - 1)
B. n(n−1)2
C. n(n + 1)
D. n(n+1)2
E. n²
Pembahasan:
Bilangan bulat positif = 1, 2, 3, 4, 5, . . .
Suku pertama (a) = 1
Beda tiap suku (b) = 1
Jumlah bilangan bulat positif pertama (Sn):
Sn = n2(2a + (n - 1)b)
Sn = n2(2.1 + (n - 1)1)
Sn = n2(2 + n - 1)
Sn = n2(n + 1)
Sn = n(n+1)2
(Jawaban: D)
Itu saja yang dapat saya tentang Contoh Soal Menentukan Rumus Suku Ke-n Baris & Deret Aritmatika dengan pembahasannya. Semoga dengan ini dapat membantu temen temen belajar. Semangatt!!!!!
EmoticonEmoticon